UNCLASSIFIED

o 407928

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

" CAMERON ETATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED



NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in comnection with a definitely related
government procurement operatior, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



| 8 AD 4o 7928

ERRATA SHEET

RM-3632-PR, Unclassified, "Satellite Librationss m ==mELliptic Oxbit "

by H., B. {checter

PLEASE INSERT IN YOUR COPY

G)
-
-

Page 20:

Page 21:

Page 22:

Change the second equation from the bot_tmcof thhe page to read:

2 = :
gy = VT i
/

Delete k from the denominator of the se c term on the right-
hand side of Eq. (45).

Delete the second term on the ripht-han dddReof Eq.  (46).

R=epor ts Department
Th _e RAND Corporation



MEMORANDUM

RM-3632-PR
MAY 1963

SATELLITE LIBRATIONS ON
AN ELLIPTIC ORBIT
H. B. Schechter

This research is sponsored by the United States Air Force under Project RAND—
contract No. AF 49(638)-700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force.

The D‘ﬂ n DM

1700 MAIN ST = SANTA MONICA « CALIFORNIA




111

PREFACE

The attitude of a satellite in orbit is materially affected by
the gravitational torques which are exerted upon it. The response be-
havior of this vehicle to these torques will depend on both the initial
orientation and angular velocity, and the orbital path followed,

Past studies, in which the distributed mass of the satellite has
been approximated by a dumbbell-shaped body contained in the orbital
plane, and moving along a circular orbit, have revealed the essential
features of the attitude response behavior.

This Memorandum extends the analysis of the dumbbell's motion to
elliptic orbits and shows to what extent the conclusions reached in
the circular case are affected when orbital eccentricity is taken into

account,




SUMMARY

This Memorandum discusses and analyzes the first-order effect of
orbital eccentricity on the planar tumbling or oscillatory motion of
a dumbbell~-shaped satellite. This has been done by assuming that the
angular orientation angle ¥ can be represented by a power series in
eccentricity e, in which the coefficient of the e term was set equal
to the circular solution Yc available from earlierlitwestigations. The
differential equation for the coefficient of the e~ term is shown to
be of an inhomogeneous Mathieu type, the particular solutions of which
can be readily obtained if certain weak restrictions are placed on the -
initial magnitude of the dumbbell's angular velocity.

The analysis indicated that the orientation of the satellite in
the elliptic orbit can differ substantially from the one determined
for the circular orbit.
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SYMBOLS
;oeffiéients of the series expansion of the Mathieu
functions
semimajor axis of the orbit
center of gravity
center of mass

Mathieu functions of fractionai order

eccentricity
force

net force exerted

quarter period of the elliptic function
modulus of the elliptic funétion

radial distance ‘

half length of dumbbell

distributed mass
total mass

_ mean anomaly, n(t - to)

mass

mean angular velocity in the elliptic orbit, ’H.;
- a

coefficient of trigonometric term in Mathieu's equafion

parameter defined below Eq. (43b)

" orbital radius

independent va;iable, s =M
kinetic energy

time

time of perigee passage

potential energy




velocity.

Wronskian

independent variable defined by Eq. (44)
average value of angulaf velocity d‘Yc/dM(i>3)
order.of the Mathieu function

earth's gravitational constant, GME

orbital period

polar position angle of dumbbell's C.M.
amplitude of oscillation .

amplitude of oscillation in circﬁlgr orbit

initial angular velocity of dumbbell

absolute angular velocity of dumbbell



I. INTRODUCTION

An object of arbitrary mass distribution whose center of mass
moves in a given orbit through a central inverse r2 force field will
experience a disturhing'terque acting afound its center of mass, which

.would cause its spatial ofientation to vary with time. This torque
" vanishes When the thfee'pfincipal moments of'ihertia of the body are

equal The motlon of a dumbbell -shaped object, being the simplest ome

. to- analyze mathematlcally ‘while at the same time exhibiting many of

the characteristics wh1ch result from the action of this 1mba1anc1ng
grav1tat10nal torque, has recelved the most attention.

An understanding of the rotational-motion characteristics of a
dumbbell shaped satelllte could concelvably be of more than purely
aeademlc 1ntereet, Judglng by the frequent»mentlon of-such a concept
in connecfion with a manned»space station in which gravity is artifi-
cally 51mu1ated The most recent of these pfoposals is General Elec-
tric Company s Pseudo Grav1ty Space Station concept, ” which envisages
two 1nhab1ted compartments hlnged by means of 100-ft- 1ong extension-
tubes and rotating around a centrally located nonrotatlng hub.

In pne_of the earlier papers on the subject, Klemperer and Baker,(l)
drawing.omn the long -known stable oscillatory librational motion of the
'WOQﬁ around its axis of rotation and being interested in the possibil-
ity of utilizing this effect for measurements of orientation on board
f? satellite, anaiyzed the librational motion of a symmetric dumbbell
placed in a’ circular orbit. Assuming small deviations from the equi-
librium position, they show that for a dumbbell'of small linear dimen-
sions (compared with the orbital radius) the dumbbell behaved essen-
tially like ain undamped simple pendulum with a natural frequency equal

/3 times the:frequency pf the motion in the circular orbit. They

also briefly mention that for an orbit which is not precisely circular,

s the 51tuat10n would become more’ complex.

(2)

" orbits but lifting the restriction on the size of the angular devia-

_ Schindler, "’ confining his analysis also to circular satellite

- tion, shows that the librational periods can range in a continuous

manner anywhere from around 1/3 T (the orbital period) on up to infinite

Descrlbed in Av1at10n Week, Vol, 78, No. 4, January 28, 1963,
pp. 56-58.



values of the time, as the initial angle which the dumbbell makes with
the vertical ranges from near zero to w/2 and that, therefore, an ini-
tial value of this angle exists for which the librational period just
equals the orbital period, ‘

(3)

of the motion of a librating dumbbell and indicates that the maximum

Klemperer, in an ARS Journal note, presents a first integral

value of the amplitude of oscillation, ¥, of thé.dumbbell is defined
. by;the relation sin ymax = @04/§n,-where @0 is the angular velocity '

when ¥ = 0, and n is the angular velocity of the center of mass in-the -

circular orbit. He points out, furthermore, that the motion remains
oscillatory as long as ? ‘<\/5n but becomes one of tumbling when Y
exceeds this value. ' o
‘ In the same issue of the ARS Joornal Baker(a) considers ao orbit
of small eccentricity and points out that under the restrictive assamp-
tion of small librational amplitude, the motlon is governed by a forced
- Mathieu equation. . ) ’
Schlndler( ) employs a Hamiltonian formulation to study the dy-
namic behavior of the dumbbell in the. vicinity of -the two positions
- of equilibrium and proves in a rigorous manner not only that the ver- -
tical-&umbbell orienﬁation is one of stable equiliBrium, while the
horlzontal one is -a position of unstable equ111br1um, but also that
a purely osc111atory motion around the unstable- equlllbrlum position
is poss1b1e in an elliptlc orbit, provided the initial condltxons.a:e
propetly chosen., » .
Moran( )

which the librational mode of motion of a-dumbbell moving initially

employs a perturbatlon technlque to study the effect

along an undisturbed circular orbit has on the.motion of its center

of mass. He shows that resonance conditions in the radial equation

of motion can arise for certain values of the initial librational fre-

quency and that the‘d_ifferenti‘al equation for the first radial cor-

‘rection term gives rise to a divergent oscillatory solution as time

" increases. i . _
The present Memorandum describes in a qualitative and quantita-

tive manner the first-order effects of orbital eccentricity on the

planar librational motion of a dumbbell by means of a perturbation ex-

pansion in the vicinity of the nominal circular-orbit solution.



II, THE GRAVITATIONAL TORQUE

Before setting out to write down in a mechanical fashion Lagrange's
equations goverﬁing the planar motion of the dumbbell satellite, it
'ﬁight be useful and instructive.first to consider briefly one aspect
: of the phys1cal origin and nature of the grav1tat10na1 torque whlch is
- but seldom recognlzed and mentioned Reference to Fig. 1 makes.it im-
1_med1ate1y obvious that as. mass ml-of the symmetric dumbbell shown
..(m1 = mé .m) is closer to the center of attraction than is mass m2,

it w111 experience ‘a, larger grav1tat10na1 radial force than will mass |

-m2 The d1fference 1n magnltude and orientation of those two forces A
[-glves rlse to the well-known expressions for the resultant force, wh1ch
:acts through the- center of mass 0 and. perturbs the translat1onal mo-
_tion, and to the grav1tat10na1 torque arOund o, whlch gives rise to

"-the 11brat10nal mot10n.~'

" Orbif of C.M,

L
7

Center of earth

Fig.| — Geometry and notation



A more graphlc way of 1nterpret1ng the action of the gravitational
_torque and one which allows for a more qualltatlve feel for its sense
. and magnltude is by a v1sua11zat10n of the instantaneous relative po~-
. sition of the dumbbell's center of mass (C.M.) and center of grav1ty
(€6 |
':" For a body of arbltrary shape, these two' points c01nc1de in a con-
stant, un1d1rect10na1 force field, and for spherlcally symmetric bodies,
.also in an inverse r2 f1e1d In.general, though, the two points are
d1st1nct.. ' " .
The center of grav1ty of a dlstrlbuted mass M is found by an ap~
pllcatlon of Newton s Thlrd Law. ~It is that pomnt at which a concen-
. trated mass equal to the total mass (M = 2m) would experience a force
'equal in magn1tude and opposite in direction to that experlenced by
the earth at 1ts center, due to the grav1tat10na1 attraction exerted
'_upon it by the mass M.. ’
" This def1n1t10n is now used to 1ocate the center of gravity of
.the dumbbell for two’ extreme cases of its orlentatlon, Y = 1/2 and

"=Y = O, as ‘shown in Flg. 2.

w721: o . _ .
ﬂTr . :-_ . , - cC.m
' ‘ ' C.G.

g v

" :Center of earth R . ' = L
{ad - o Center of earth
(b)

Fig. 2—Re|ahve Ioccmon of center of mass and cenfer of gravity



Letting Fl and Fz designate the forces at my and mz, respectively,

we have

(1)

- where ml m2 =m and o= GM.E the eatth s gravitational constant. Be-
cause of " symmetry, ‘the net force exerted on the dumbbell F ’ will be
parallel to T, so that ' '

- - - "..',._ L .m/T '.'_< Cm "4."'
'Fr' Fl ir"'FZ ir' 2(11“ ir) 2(11:' ir)
. . : r 1 : 2
. 1 SRR 2 . :
2)

This force acts on the concentrated mass 2m located at a radial

distance L. Under the. assumption l./r << 1 we get

. . ) 2‘ . ..‘
Fpm o2 ® 2 (115 -3
r o .
from which we find that
CLer 1+24 zr[1+%&-2-]=r+m: (%)
: r r° - ‘ ,

and

2 : .
3 . -
or =~ 7 f— : - ()



~ This places the center of gravity abeve the center of mass. In

the case of a dumbbell rotating in a counterclockwise direction, any
slighﬁAincfeaee in the angle ¥ beyond m/2 would cause the center of
.gravity to shift to the left of the vector T and thereby give rise to
an accelerating moment around the center of mass. The converse holds
. true during the ‘period of tiﬁe prior to the reaching of the horizontal
‘orientation, when the torque has a retarding effect,

"A repetition of the above analysis for the orientation (b) of
‘ Fig. 2 shows that the center of gravity is now .located a distance
o = 3/2 2 /r below the center of mass. It is immediately evident
that any slight deviation from the vertical position gives rise to a
'torque which opposes the motion, and thus labels the vertical position
one of stable equilibrium. ' '

The path described by the dumbbell's center of gravity during one
2cgmp1ete period of ‘rotation is shown.schematically in Fig. 3 and givee
an.indieatidn of the oscillatbry ﬁature.of the gravitational torque.

. Locus of C.G.travel
: 3 l; 2/“#r /
— 31,2/2r — \.O .
: HTR |
. J Location for maximum

refarding forque

r

Location for moxlrnum
accelerating torque

Center of earth"

Fig.3—Locus o'f center-of-gravity travel (not drawn toscale)



I1I. EQUATIONS OF MOTION

The kinetic energy is

N s W )
S WS
who.fe
V, = 7+ w1
1 y
V2 f r - Lwiy
w = 6.+ @
r = r:l.r+1:'eie
. 1/2
T " r2+L2-2r£cosY]
2 2‘ 1/2
rz'-. r + 4 +2rl,cos‘¥]

(6)

10

®)

Figure 4 shM the varibu's parameters and unit vectors used in
the above relations. After Eqs. (8) are substituted into Eqs. (6) and

(7) and the expression for the Lagrangian [-U is obtained, one can

derive the set of differential equations shown below.

g_réz - _%[;-chosxf;-i-t;osx
o | 5 T

zn:-;[ 26#42(64-&)] -0

9)

(10)



4 [ 20+iy] = urtsiny|l L |
dt‘[z (efv)] : [r3 r3] (11)
2 0

Equation (10) indicates that the combined angular momentum of the

‘motion is conmserved,

pA

| . Fig. Q—Gelometry of motion

The bracket on the right-hand side of both Eq. (9) and Eq. (11)
1 and r2_of Eq. (8).
Realizing that £/r << 1, we can write the difference of the inverse

can be evaluated with the aid of the relations for r

cubes of the radii as



1 1

" =
N W

gy
)
1

r

2

e A ] el oll)e]

. . ) . ' 2.'
2Ly, 1 - o4 cos y 4 04 64
o r3 [1.' J(r) cos ¥ -1 3(r) cos ¥+ 0 (r) see ™ =, cCO8 ¥

After'qhe righf-hand side of Eq. (9) is also evaluated, we come
up with the following set of differential equations:

¥ - ro? --:5[1+-23-(f)2 (Geosy -1 +...] (2

SR (L)Y Gen]l- o an
3+?+§-“§s1n' 29 = 0 | 14)
2o

It is observed that the dumbbell size appears only ‘through the
parameter (L/r)z. In order to_lbe able to express the orbital paramete
as ‘power series in '(L/r)z it is necessary to treat (l/r:)2 as a con-
stant. This can be dbne for orbits of small enough eccentricity, e,
vwhen 4/r e-(_'sfla, where a is the semimajor axis of .the orbit. Follow-

ing Moran by assuming éxpansions of the form

-8 -'_~ i en(f>n
- n=0 .

(15)

rs
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. there results the zeroth set of equations

¥ toéi .- uf ' (16)
. r
o
g—t<r§é°> =0 . .an
v+2lhogmoy = - : o (8)
r ’ . . <o :
o.

Equations (16) and (17) define of course the undisturbed orbit
- of the center of mass and have as their solutions the series

. A 2 : .
fo - a[l -e pos.H - % .{cos 2M = 1) = 0(e3)...] (19)
o = M+2 2 3
o e sin M + %€ sin 2M + 0(e”)... (20)
where
M = n(t - to) - méan anomaly
t, = time of perigee passage
n = mean angular velocity in the elliptic orbit = u;
: ' a
Now let
n o '
¥y = YC+ 2 Yne ) (21)

n=1]

where Yc denotes the orientation angle of the dumbbell when the center
of mass describes a circular orbit, Substituting Egs. (19), (20), and
(21) into Eq. (18) and colleéting like terms in eccentricity gives, to
linear terms in eccentricity ‘
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32 - .
Y, +.2 n"sin2y = 0. (22)
:ic + e‘ifl + g-nz .[1 + 3e cos 'H] [’sin 2‘(Yc + eYl)] - ‘Zenz sin M (23)

Approximating sin Z(Yc + eYl) by (sin 2¥ ot 2e¥; cos ZYC) and
using Eq. (22) gives the following differential equation for ¥
:y' + (3:’12 cos 2¥ ) Y, = 2n2
1 ¢’ 1

sin M - 'g- n2 cos M sin ZYC (24)

0

We now replace time, t, by the mean anemaly, ﬁ, as the independent
. variable, which eliminates the factor nz in Eqs. (22) and (24). Thus

wed - |
¥, + 5 sin 2y, 0 (25)
VG2 ¥, = 2emnK -2 cosMstn2y, . (26)

“where ( )'-_ denotes differentiation with respect to the mean anomaly M.
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. IV, MOTION IN THE ELLIPTIC ORBIT

We shall now invéstigéte the nature of the solutions of Eq.‘(26).

These depend on the form of the solution of Eq. (25), the differential 6
: 5

equation of the circular-orbit case. As shown by Schindler and Moran,( ’
. the solution to Eq. (25 depends on the initial value of Y'c for ¥, = 0,

i
and is given by

sin‘{l (Y /J_)Sn\/i ) . 'Y’ | <f (oscillation)

(27a)
in'v, = sn Y % ) |~yéi| > /{ (tumbling) (27b)
- The modulug k of the elliptic function is given by

# = Yéi/AC/s (;scillation) ' B (28a)
'.ﬁ/yé;_ (tumbling) | | (280)

Furthermore, for two values of the initial angular velocity, Y’ =
1.66675, 1.78794, the petiods of the oscillatory and tumbling modes,
respectively, will equal the orbital period of motion.

A plot of Eq. (27), taken from Ref. 6, is reproducea for conven-
ience in Fig. 5.

SOLUTION FOR LARGE V¥’ (TUMBLING MOTION)
i )

The solution of Eq. (26) with Eq. (27) taken into account is fa-
cilitated if the range of possible values of‘Yé is broken up .nto two
separate regions. For large values of ¥; , say Y 2 3, Fig. 5 shows
that the oscillatory ripple around the constant-slope line of Yc versus

60 has nearly disappeared, so that it is reasonable to approximate sin Yc
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2m
— . —eXact
| ——=linearized
w/2 - '
i V3
66675 -
. s
0 /
> SN RS N N Y TS T S R
™25 /2 T 37/2 2
fo=M

- Fig.5—Time history of rotational motion in a circular orbit (6)
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For =3, q= - 3 = -0.1667.
2a .

The otrder of the Mathieu function, B, is obtained by equating to

each other the two functions‘vo and Vs, which are given by the expressions

2 2

. -q/(B + 2) q 3

v, = - = vee 0(g)

° 1 @+ 2)% @+ o2

(32)
2 2
= g . L q 3

v = - y + " - + see o(q )

° T -2 -2%@-°

For the present case, a value of B é 0.118 is found. The coef-

ficients Agr are solved frqm the recurrencé relations.

“(2r + B2 Agr - q(Agﬁz + -Agr-z)' -0 (=<r< .-) (33) )

‘When terms beyond Agb and AE are neglected, the other coefficients

cdn be evaluated in terms of Ag. We find

AP = B
AP, = 0.0005205 A8
AP = -0.04706 AP .
-2 o

' (34)

2 = -0.03716 AP :
2 ]

' s p A a
A, = 0.0003651 A
and the two solutions then become

A% [b.oooszos cos 3.882s + 0.04706 cos 1.882s

Y11 Ceg.118

+ cos 0,118s + 0.03716 cos 2.118s + 0.0003651 cos 4.118s + ....]

(35)
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by sin oM, where M is the mean anomaly, and &« is the average value of
the angular velocity d‘l’c/dM which is assumed to be larger than or equal
to 3. For convenience of analysis o will be considered an integer. With

"the additional chan‘ge'of independent variaiale 8 = oM, Eq. (26) becomes

a2y

9 .
—7L+<}7cos 25)‘1’1 = %sini-—?cosisinh (29)
ds™ - o . . o 2« o

~which is an inhomogeneous Mathieu equation of the form

2 ' .
.d_2£+ [a - 2q cos 2x]z = f(x) (30)
dx
with
a. = 0
and.
. -
2d2

In view of the assﬁmpt:ion @ > 3, all solutions to Eq. (29) are
stable and oscillatory in nature and consist of Mathieu functions of
fractional order. For purposes of illustration, the method of obtain-

ing the solution for the case o = 3 will be demonstrated below.

NUMERICAL -EXAMPLE SOLUTION

Employihg the notation of Ref. 7, the two linearly independent
solutions to the homogeneous part of the equation, Yll and le', are

the functions Cea(s, -q) and SeB(s, -q) which are given by the series

¥, = Cea(s, -q) = ' i (-‘l)r Agr c?s (2r + B8)s
r= - - :

1)

Y), = Sep(s, -0 = i (-1)F AZr'sm (2r + 8)s

r = -0,



16

= Ag [-o.oooszos sin 3.882s - 0.04706 sin 1.882s

Y12 Sep.118

+ sin 0.118s + 0.03716 sin 2,118s + 0,0003651 sin 4.118s + ....]

(36)
The complementary solution to Eq. (29) is then

YT el s Y %0018 G

The solutions are nonperiodic but are bounded and tend neither
to O or ®» as s — @, '

_ If we now define the set of fundamental solutions vll’ ?12 such
that ' ' :

7,0 = ¥, =1

(38)

7,0 = F,(00 = 0

the complete solution is given by

= G,(8) ¥,3(8) + Cy(s) ¥p,(8) + ¥,(0) Ty (s) + ¥{(O) Fpp()

Yy
' (39)
whefe
' s h(D) ¥, (@)
Cl(s) = - 14
o Wy, ®, v,0]

s h(§) ¥,(8)
Cz(s) = I - ae .
o0 Wy, @), 4,®]
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WEwll(g), Yiz(g)] = Wronskian of Y,; and ¥,

Since all the initial éonditioﬁé on the motion are assumed to

have been satisfied by tﬁe éircular-orbit solution, Yc, we have Yl(O) =

Y{(O) = 0, and the complementary portion of the solution consequently
vanishes.: . .

The Wronskian W will be a constant because Eq. (29) has no first
‘derivative of Yl’ and can therefore be pulled out from the integral

sign. Solution (39) can then be written

o ' s : . 8 o
Wy, = Seo.ns(s)o.f h(g) Ce ;,4(8008 - ceo’.'us(s)of h(E) Seg,114(8)48

(40).

- When all the oﬁerations are carried out we finally end up with

the solution

1

Y. = 1,00028 - 1.,0565 sin 0.3333s + 0.10892 sin 1.6667s

- 0.01276 sin 2.3333s - 0.00124 sin 4.3333s

- 0.00112 sin 3.6667s + .... (41)

The result is plotted in Fig. 6, which shows the behavior of Y ’ Yl’
and Yl as a function of M for one orbital period of the dumbbell.

The magnitude of the perturbation caused by an orbital eccentri-
city of e = 0.1 is shown by the dashed curve. It is apparent that
orientation errors as large as 80 deg could occur during the first

orbital period.
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Y = Orientation angle in circular orbit

¥, = Angular perturbation due to orbital eccentricity .

/

7
7

vedrort
2

w2

L

I

100

200
Mean anomaly M (deg)

300

360

Fig. 6 — Solution for the tumbling case with a =3
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SOLUTION FOR SMALL 1{ (OSCILLATORY MOTION)
i

As Yé is reduced from a value of about 3 and approaches ./3,
the accura%y of the approximation \yc R Yé + M becomes progressively
worse, and the above solution ceases to déscribe the motion.

Neglecting the region around the condition Y"é = .\/.'-3, which is
only of limited interest, we consider now the fomiof the solution
of Eq. (26) for Yé < ﬁ.

The functionsicos '2\110 and sin 2YC appearing in the differential
Eq. (26) can be expressed as functions of M by means of Eq. (27a).

1-2stnly, = 1-21%n’ /3N

cos 2¥
¢ (42)

sin 2y - = .z_si:i Y cos ¥ = 2ksn /3Mdn/3NM = 2k —4——cn /A M

d(/A M)

. In order to bring Eq. (26) into a more tractable form, the func-
tions, snﬁ M and cnﬁ M are expanded in Fourier series.

" VB avim YT
kK snﬁ M = ﬁ sin \/3-"!- + \/; sin V3 M + si
2m 1 -3 K TP 2K 1 -9

5+/3 it~
n 2K +

+1/2 ' ' :
o alie Qr+pVam (438

L o0t Sin 2K . a
.r'-ol-.q

KK ‘q L/2 2r + 1 V3 M
: - - (2r ) V3 m
s cn3 M | 557 cos T (43b)

1+7q

~s

r=0

. 7
oMK /K

1l - kzsin2¢

~
L}

K(k) =
. o

o
]

K(k ")

P R
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For sufficiently small values of q, the retention of the leading term
in each of Eqs. (43a) and (43b) might give sufficient accuracy. A
rough idea of the size of q is obtained by taking.for instance the
case Yé = 1.66 as a rough indication of an upper bound on the angular
velocit:%u This corresponds to equality in orbital and librational

periods. For this case

Kk = 2286 _ g 958 K@) = 2.8
3 : .

K’ = 0.2868 : K(k') == 1.6
1.6 - '

T = e 28 2 0,165

As \yé decreasés, k will decrease and k'’ will increase, so that
- K will be %educed and K’ increased; this_ will lead to-a decrease in

" the size of Q. Thus, for

'
Yci <‘ 1.66

q < 0,165

Placing an upper limit of 1.66 on ‘ifé , it appears that the reten-
tion of only one term in the Fourier expagisions would bs satisfactory
in the present case. Under this approximation terms which are of mag-

nitude q have been neglected in comparison with unity. Thus

2 .2 M3 p2 . p? V3 o

P° . P ‘
cosz\yc?_-l-l’ sin 2K 1-2+2 cos X
o Vg V3 mM
sin ZYC = sin 7K
kKK°(1 + 7
- ,2
8"2“": 2—
P2 = i - 8 g
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= 1
(Note that k Yci//c/s by definition.)

Making the additional transformation of independent variables

= _—-‘/52;“ (44)
we obtain Eq. (26) in its final form
2
d7y
21+[a-ZQCOS 22]‘{11 = §l<-2-sin 2K, in( +1)z
a2t L VAR k(1+)
(45)
+sin<1- 2K ) ]
where
wa -
Y P -
i 1-9
= -8 -_—:L__?f
ad-9

Aé in the last case, here too the motion of libration is governed
by an inhomogeneous Mathieu equation. The bounded oscillatory form of
the forcing function suggests 1mmediately that for finite values of
Y’ the nature of the forced solution of Eq. (45) depends on the sta-
bliity or instability exhibited by the solution to the homogeneous

" Mathieu equation. This question is easily resolved with the aid of

Fig. 7, which presents in the plane of (a) versus (q) the stable and

unstable regions of the solution to Mathieu's equation. Due to sym-

metry with respect to the a axis, the right side of the Mathieu plane
has been used,

The curves Ceo, Sel, and Ce1 denote respectively the loci of zeroth
and first-order periodic solutions to Mathieu's equations and represent

the transition curves between the stable and unstable regions shown.
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The directed dashed curve indicates the trace of the (a,q) point of
Eq. (45) as the initial value of angular velocity Yé tends toward
zero. Except for a narrow region around a = 1, q = 0, the homogeneous
solution is at all times oscillatory and divergent as z Increases,
making the complete solution unstable. That segment of the dashed
curve which appears to follow closely along the Se1 curve has associ-
ated with it divergent, though periodic, homogeneous solutions.
Although the scale of Fig. 7 does not make this apparent, a simpli-
fied analysis shows that the dashed curve approaches the point a =1,
q = 0 with a slope da/dlq] = -2, Since the Se1 curve exhibits at this
point a slope of -1, it appears that the dashed curve penetrates into

the stable region of the plane as Yé assumes vanishingly small values.

i
: In the limit, as
Yy’ =0
i
K -n/2
a=1
-k 4
V3
Equation (45) is reduced to the form
2
a7y .
1 2 1 1[ 1 1
_—ty = = gin—=z - sin 1+-—-—>z+sin<1-——>z]
w2 Y 3 a2 ( J3 S

(46)

The complementary solution of Eq. (46) will be bounded and perio-
dic, but the forced solution, though bounded tob, will not exhibit any
periodicity. The form of the arguments of the trigonometric terms in

the forcing function precludes the occurrence of resonance conditions.
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Fig.7— Effect of initial angular velocity

¥, on the location of the solution pointin
i the a, q plane
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VI. CONCLUSION

The planar rotational motion of a dumbbell-shaped satellite whose
center of mass moves along an undisturbed elliptic orbit of slight ec-
centricity has been analyzed. It has been shown that the correction
terms due to eccentricity, which must be superimposed on the angular-
position time behavior of the same satellite when moving along a cir-
cular orbit, are always bounded and oscillatory for all values of ini-
tial angular velocity in excess of roughly 3 times the orbital angular
velocity. Depending on the magnitude of the eccentricity, these per-
turbations could be quite appreciable,

When the initial motion is one of pendulous oscillations, the
first-order effect of eccentricity is to introduce a divergent oscil=
latory term into the time behavior of the first perturbation term and
thus to cause the orientation angle in the elliptic orbit to differ
significantly from that assumed in the circular orbit. Because of
possible phase differences in the time behavior of the circular orien-
tation angle Yc and the perturbed correction term Yl, it is still possi-
ble for the complete solution not to exhibit an actual boundless in-
crease in amplitude as long as the restrictions imposed by linearity

are not violated.



